Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Ryan Dehoff
- Ying Yang
- Alex Plotkowski
- Singanallur Venkatakrishnan
- Alice Perrin
- Amir K Ziabari
- James A Haynes
- Michael Kirka
- Philip Bingham
- Steven J Zinkle
- Sumit Bahl
- Vincent Paquit
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Andres Marquez Rossy
- Brian Post
- Bruce A Pint
- Christopher Fancher
- Christopher Ledford
- Costas Tsouris
- Dean T Pierce
- Diana E Hun
- Gerry Knapp
- Gina Accawi
- Gordon Robertson
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Jay Reynolds
- Jeff Brookins
- Jong K Keum
- Jovid Rakhmonov
- Mark M Root
- Mina Yoon
- Nicholas Richter
- Obaid Rahman
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Boudreaux
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.