Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Radu Custelcean
- Chris Masuo
- Costas Tsouris
- Peter Wang
- Rafal Wojda
- Alex Walters
- Gyoung Gug Jang
- Jeffrey Einkauf
- Prasad Kandula
- Benjamin L Doughty
- Brian Gibson
- Bruce Moyer
- Christopher Fancher
- Gs Jung
- Joshua Vaughan
- Luke Meyer
- Nikki Thiele
- Santa Jansone-Popova
- Udaya C Kalluri
- Vandana Rallabandi
- William Carter
- Akash Jag Prasad
- Alexander I Wiechert
- Alex Plotkowski
- Amit Shyam
- Calen Kimmell
- Chelo Chavez
- Chris Tyler
- Clay Leach
- Gordon Robertson
- Ilja Popovs
- J.R. R Matheson
- Jayanthi Kumar
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jennifer M Pyles
- Jesse Heineman
- John Potter
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Marcio Magri Kimpara
- Md Faizul Islam
- Mina Yoon
- Mostak Mohammad
- Omer Onar
- Parans Paranthaman
- Praveen Kumar
- Riley Wallace
- Ritin Mathews
- Santanu Roy
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Subhamay Pramanik
- Subho Mukherjee
- Suman Debnath
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Yingzhong Ma

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called