Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Radu Custelcean
- Costas Tsouris
- Kyle Gluesenkamp
- Gyoung Gug Jang
- Jeffrey Einkauf
- Benjamin L Doughty
- Bo Shen
- Bruce Moyer
- Gs Jung
- Melanie Moses-DeBusk Debusk
- Nikki Thiele
- Santa Jansone-Popova
- Alexander I Wiechert
- Dhruba Deka
- Ilja Popovs
- James Manley
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Mina Yoon
- Navin Kumar
- Parans Paranthaman
- Santanu Roy
- Saurabh Prakash Pethe
- Sreshtha Sinha Majumdar
- Subhamay Pramanik
- Tugba Turnaoglu
- Uvinduni Premadasa
- Vera Bocharova
- Xiaobing Liu
- Yeonshil Park
- Yifeng Hu
- Yingzhong Ma

Atmospheric carbon dioxide is captured with an aqueous solution containing a guanidine photobase and a small peptide, using a UV-light stimulus, and subsequently released when the light stimulus is removed.

Demand for lithium is expected to increase drastically due to the use of rechargeable lithium-ion batteries used in portable electronics and electric vehicles. An efficient method to extract lithium is necessary to help meet this demand.

Technetium is a radioactive isotope that is a byproduct of nuclear processing; there are currently limited mechanisms to capture technetium when uranium is recycled, hindering the efficient recycling of spent nuclear fuel.

Targeted radionuclide therapy (TRT) has emerged as a promising method for cancer treatment, leveraging Meitner-Auger Electron (MAE)-emitting radionuclides.

Direct air capture (DAC) technologies that extract carbon dioxide directly from the atmosphere are critical for mitigating effects of climate change.

Buildings are energy intensive and contribute to carbon dioxide emissions while accounting for one-third of energy consumption worldwide. Heat pump technology can assist in electrification and decarbonization efforts.

Selenate and selenite oxyanions are crystallized together with sulfate anions using ligands. In this approach, we will take advantage of the tendency of these similar oxyanions to co-precipitate into crystalline solid solutions.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

The widespread use of inexpensive salt hydrate-based phase change materials, or PCMs, has been prevented by a key technical challenge: phase separation, also known as incongruency, which results in the significant degradation of the materials' ability to store thermal energy o