Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Radu Custelcean
- Costas Tsouris
- Michael Kirka
- Ryan Dehoff
- Gyoung Gug Jang
- Jeffrey Einkauf
- Rangasayee Kannan
- Vincent Paquit
- Adam Stevens
- Benjamin L Doughty
- Bruce Moyer
- Christopher Ledford
- Gs Jung
- Nikki Thiele
- Peeyush Nandwana
- Santa Jansone-Popova
- Akash Jag Prasad
- Alexander I Wiechert
- Alice Perrin
- Amir K Ziabari
- Beth L Armstrong
- Brian Post
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Corson Cramer
- Fred List III
- Ilja Popovs
- James Haley
- James Klett
- James Parks II
- Jayanthi Kumar
- Jaydeep Karandikar
- Jennifer M Pyles
- Jong K Keum
- Keith Carver
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Mina Yoon
- Parans Paranthaman
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Saurabh Prakash Pethe
- Singanallur Venkatakrishnan
- Steve Bullock
- Subhamay Pramanik
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yingzhong Ma
- Yukinori Yamamoto
- Zackary Snow

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Atmospheric carbon dioxide is captured with an aqueous solution containing a guanidine photobase and a small peptide, using a UV-light stimulus, and subsequently released when the light stimulus is removed.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.