Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Radu Custelcean
- Costas Tsouris
- Gyoung Gug Jang
- Jeffrey Einkauf
- Venkatakrishnan Singanallur Vaidyanathan
- Ali Abouimrane
- Amir K Ziabari
- Benjamin L Doughty
- Bruce Moyer
- Gs Jung
- Nikki Thiele
- Philip Bingham
- Ruhul Amin
- Ryan Dehoff
- Santa Jansone-Popova
- Vincent Paquit
- Alexander I Wiechert
- David L Wood III
- Diana E Hun
- Georgios Polyzos
- Gina Accawi
- Gurneesh Jatana
- Hongbin Sun
- Ilja Popovs
- Jaswinder Sharma
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Junbin Choi
- Laetitia H Delmau
- Luke Sadergaski
- Lu Yu
- Mark M Root
- Marm Dixit
- Md Faizul Islam
- Michael Kirka
- Mina Yoon
- Obaid Rahman
- Parans Paranthaman
- Philip Boudreaux
- Pradeep Ramuhalli
- Santanu Roy
- Saurabh Prakash Pethe
- Subhamay Pramanik
- Uvinduni Premadasa
- Vera Bocharova
- Yaocai Bai
- Yingzhong Ma
- Zhijia Du

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Atmospheric carbon dioxide is captured with an aqueous solution containing a guanidine photobase and a small peptide, using a UV-light stimulus, and subsequently released when the light stimulus is removed.