Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Radu Custelcean
- Costas Tsouris
- Gyoung Gug Jang
- Jeffrey Einkauf
- Alexander I Wiechert
- Benjamin L Doughty
- Bruce Moyer
- Gs Jung
- Hongbin Sun
- Nikki Thiele
- Prashant Jain
- Santa Jansone-Popova
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Eddie Lopez Honorato
- Fred List III
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Ilja Popovs
- Isaac Sikkema
- Jayanthi Kumar
- Jennifer M Pyles
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Laetitia H Delmau
- Luke Sadergaski
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Md Faizul Islam
- Mike Zach
- Mina Yoon
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Parans Paranthaman
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Santanu Roy
- Saurabh Prakash Pethe
- Subhamay Pramanik
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Ugur Mertyurek
- Uvinduni Premadasa
- Vandana Rallabandi
- Venugopal K Varma
- Vera Bocharova
- Vishaldeep Sharma
- Vittorio Badalassi
- Yingzhong Ma

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Atmospheric carbon dioxide is captured with an aqueous solution containing a guanidine photobase and a small peptide, using a UV-light stimulus, and subsequently released when the light stimulus is removed.

Currently there is no capability to test materials, sensors, and nuclear fuels at extremely high temperatures and under radiation conditions for nuclear thermal rocket propulsion or advanced reactors.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Demand for lithium is expected to increase drastically due to the use of rechargeable lithium-ion batteries used in portable electronics and electric vehicles. An efficient method to extract lithium is necessary to help meet this demand.

Technetium is a radioactive isotope that is a byproduct of nuclear processing; there are currently limited mechanisms to capture technetium when uranium is recycled, hindering the efficient recycling of spent nuclear fuel.

Targeted radionuclide therapy (TRT) has emerged as a promising method for cancer treatment, leveraging Meitner-Auger Electron (MAE)-emitting radionuclides.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.