Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Ahmed Hassen
- Amit K Naskar
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Steven Guzorek
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Brittany Rodriguez
- Charlie Cook
- Christopher Bowland
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- John Lindahl
- Jordan Wright
- Michael Kirka
- Robert E Norris Jr
- Sana Elyas
- Santanu Roy
- Subhabrata Saha
- Sumit Gupta
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vipin Kumar

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

The invention addresses the long-standing challenge of inorganic phase change materials use in buildings envelope and other applications by encapsulating them in a secondary sheath.

The technologies described herein provides for the High Temperature Carbonization (HTC) in the manufacturing of carbon fibers (CF). The conventional method for HTC is based in thermal radiation and this technology uses in a liquid medium.

The ID provides a solution approach for faster chemical processing and carbon functional grading from SiC to MC to provide a tougher carbon and CMC structure.

The solution proposed here is a modified carbon-based tile face that is mechanically combined with an insulative backing. The tile face is based on a material architecture to minimize weight and thermal conductivity while maximizing thermal stability.

This technology aims to provide and integrated and oxidation resistant cladding or coating onto carbon-based composites in seconds.

Silicon nitride fiber is a critical material mainly used in the aerospace industry but has many applications. This fiber is prized for its properties, as it is transparent to electromagnetic radiation but allows signals to go through it.

The widespread use of inexpensive salt hydrate-based phase change materials, or PCMs, has been prevented by a key technical challenge: phase separation, also known as incongruency, which results in the significant degradation of the materials' ability to store thermal energy o