Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Steve Bullock
- Corson Cramer
- Chris Masuo
- Peter Wang
- Ahmed Hassen
- Alex Walters
- Amit K Naskar
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Brian Gibson
- Jaswinder Sharma
- Joshua Vaughan
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Steven Guzorek
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Brian Post
- Brittany Rodriguez
- Calen Kimmell
- Charlie Cook
- Chelo Chavez
- Christopher Bowland
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gordon Robertson
- Holly Humphrey
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Jordan Wright
- Michael Kirka
- Riley Wallace
- Ritin Mathews
- Robert E Norris Jr
- Sana Elyas
- Santanu Roy
- Subhabrata Saha
- Sumit Gupta
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Vipin Kumar
- Vladimir Orlyanchik
- Xiaohan Yang

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The technologies provide additively manufactured thermal protection system.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called