Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Jaswinder Sharma
- Alexey Serov
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Vincent Paquit
- Xiang Lyu
- Akash Jag Prasad
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Calen Kimmell
- Canhai Lai
- Christopher Bowland
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Haley
- James Parks II
- James Szybist
- Jaydeep Karandikar
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Marm Dixit
- Meghan Lamm
- Michelle Lehmann
- Ritu Sahore
- Robert E Norris Jr
- Ryan Dehoff
- Santanu Roy
- Sumit Gupta
- Todd Toops
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Zackary Snow

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.