Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Corson Cramer
- Kashif Nawaz
- Steve Bullock
- Joe Rendall
- Zhiming Gao
- Amit K Naskar
- Greg Larsen
- James Klett
- Kai Li
- Praveen Cheekatamarla
- Trevor Aguirre
- Vishaldeep Sharma
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Kyle Gluesenkamp
- Logan Kearney
- Michael Toomey
- Mingkan Zhang
- Nihal Kanbargi
- Vlastimil Kunc
- Ahmed Hassen
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Bo Shen
- Brian Fricke
- Charlie Cook
- Cheng-Min Yang
- Christopher Bowland
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Easwaran Krishnan
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- Hongbin Sun
- Huixin (anna) Jiang
- John Lindahl
- Jordan Wright
- Melanie Moses-DeBusk Debusk
- Michael Kirka
- Muneeshwaran Murugan
- Nadim Hmeidat
- Nickolay Lavrik
- Pengtao Wang
- Robert E Norris Jr
- Sana Elyas
- Santanu Roy
- Steven Guzorek
- Sumit Gupta
- Tomonori Saito
- Tony Beard
- Troy Seay
- Uvinduni Premadasa
- Vera Bocharova

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

US coastal and island communities have vulnerable energy infrastructure and high energy costs, which are exacerbated by climate change.

The technologies provide additively manufactured thermal protection system.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The heat exchanger is a three-medium heat exchanger with phase change material (PCM) stored in the external fin tubes. It allows the refrigerant flowing inside the internal fin tubes and the air to