Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Kashif Nawaz
- Joe Rendall
- Ying Yang
- Zhiming Gao
- Amit K Naskar
- Kai Li
- Praveen Cheekatamarla
- Vishaldeep Sharma
- Alice Perrin
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Kyle Gluesenkamp
- Logan Kearney
- Michael Toomey
- Mingkan Zhang
- Nihal Kanbargi
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Bo Shen
- Brian Fricke
- Bruce A Pint
- Cheng-Min Yang
- Christopher Bowland
- Christopher Ledford
- Costas Tsouris
- Easwaran Krishnan
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hongbin Sun
- Huixin (anna) Jiang
- James A Haynes
- Jong K Keum
- Melanie Moses-DeBusk Debusk
- Michael Kirka
- Mina Yoon
- Muneeshwaran Murugan
- Nicholas Richter
- Nickolay Lavrik
- Patxi Fernandez-Zelaia
- Pengtao Wang
- Radu Custelcean
- Robert E Norris Jr
- Ryan Dehoff
- Santanu Roy
- Sumit Bahl
- Sumit Gupta
- Sunyong Kwon
- Tim Graening Seibert
- Troy Seay
- Uvinduni Premadasa
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

US coastal and island communities have vulnerable energy infrastructure and high energy costs, which are exacerbated by climate change.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The heat exchanger is a three-medium heat exchanger with phase change material (PCM) stored in the external fin tubes. It allows the refrigerant flowing inside the internal fin tubes and the air to