Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Amit K Naskar
- Amit Shyam
- Blane Fillingim
- Brian Post
- Jaswinder Sharma
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Akash Jag Prasad
- Alex Plotkowski
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Bruce A Pint
- Bryan Lim
- Calen Kimmell
- Canhai Lai
- Christopher Bowland
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gordon Robertson
- Holly Humphrey
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Peter Wang
- Robert E Norris Jr
- Santanu Roy
- Steven J Zinkle
- Sumit Gupta
- Tim Graening Seibert
- Tomas Grejtak
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato
- Zackary Snow

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.