Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Radu Custelcean
- Costas Tsouris
- Amit K Naskar
- Gyoung Gug Jang
- Jeffrey Einkauf
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Benjamin L Doughty
- Bruce Moyer
- Gs Jung
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Nikki Thiele
- Philip Bingham
- Ryan Dehoff
- Santa Jansone-Popova
- Vincent Paquit
- Alexander I Wiechert
- Arit Das
- Christopher Bowland
- Diana E Hun
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gina Accawi
- Gurneesh Jatana
- Holly Humphrey
- Ilja Popovs
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Md Faizul Islam
- Michael Kirka
- Mina Yoon
- Obaid Rahman
- Parans Paranthaman
- Philip Boudreaux
- Robert E Norris Jr
- Santanu Roy
- Saurabh Prakash Pethe
- Subhamay Pramanik
- Sumit Gupta
- Uvinduni Premadasa
- Vera Bocharova
- Yingzhong Ma

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.