Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Soydan Ozcan
- Meghan Lamm
- Halil Tekinalp
- Umesh N MARATHE
- Vlastimil Kunc
- Ahmed Hassen
- Katie Copenhaver
- Kyle Kelley
- Rama K Vasudevan
- Steven Guzorek
- Uday Vaidya
- Alex Roschli
- Beth L Armstrong
- Dan Coughlin
- Georges Chahine
- Matt Korey
- Pum Kim
- Sergei V Kalinin
- Vincent Paquit
- Vipin Kumar
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Amber Hubbard
- Anton Ievlev
- Ben Lamm
- Bogdan Dryzhakov
- Brian Post
- Cait Clarkson
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Costas Tsouris
- David Nuttall
- Erin Webb
- Evin Carter
- Gabriel Veith
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Kevin M Roccapriore
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Liam Collins
- Marm Dixit
- Marti Checa Nualart
- Maxim A Ziatdinov
- Nadim Hmeidat
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Ryan Dehoff
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Shajjad Chowdhury
- Stephen Jesse
- Steve Bullock
- Steven Randolph
- Tolga Aytug
- Tyler Smith
- Vladimir Orlyanchik
- Xianhui Zhao
- Yongtao Liu
- Zackary Snow

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).