Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Kyle Kelley
- Rama K Vasudevan
- Ali Riza Ekti
- Brian Gibson
- Joshua Vaughan
- Luke Meyer
- Raymond Borges Hink
- Sergei V Kalinin
- Udaya C Kalluri
- William Carter
- Aaron Werth
- Aaron Wilson
- Akash Jag Prasad
- Amit Shyam
- Anton Ievlev
- Bogdan Dryzhakov
- Burak Ozpineci
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Gary Hahn
- Gordon Robertson
- Isaac Sikkema
- Isabelle Snyder
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Joseph Olatt
- Kevin M Roccapriore
- Kunal Mondal
- Liam Collins
- Mahim Mathur
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mingyan Li
- Mostak Mohammad
- Neus Domingo Marimon
- Nils Stenvig
- Olga S Ovchinnikova
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Riley Wallace
- Ritin Mathews
- Sam Hollifield
- Stephen Jesse
- Steven Randolph
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Yarom Polsky
- Yongtao Liu

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.