Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Alexey Serov
- Jaswinder Sharma
- Sergei V Kalinin
- Xiang Lyu
- Amit K Naskar
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Bruce Hannan
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Kevin M Roccapriore
- Khryslyn G Araño
- Liam Collins
- Logan Kearney
- Loren L Funk
- Marm Dixit
- Marti Checa Nualart
- Maxim A Ziatdinov
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Neus Domingo Marimon
- Nihal Kanbargi
- Olga S Ovchinnikova
- Polad Shikhaliev
- Ritu Sahore
- Stephen Jesse
- Steven Randolph
- Theodore Visscher
- Todd Toops
- Vladislav N Sedov
- Yacouba Diawara
- Yongtao Liu

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.