Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Alexey Serov
- Jaswinder Sharma
- Sergei V Kalinin
- Xiang Lyu
- Yaosuo Xue
- Amit K Naskar
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Fei Wang
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Kevin M Roccapriore
- Khryslyn G Araño
- Liam Collins
- Logan Kearney
- Marm Dixit
- Marti Checa Nualart
- Maxim A Ziatdinov
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Neus Domingo Marimon
- Nihal Kanbargi
- Olga S Ovchinnikova
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Ritu Sahore
- Sreenivasa Jaldanki
- Stephen Jesse
- Steven Randolph
- Suman Debnath
- Sunil Subedi
- Todd Toops
- Yonghao Gui
- Yongtao Liu

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.