Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Rafal Wojda
- Kyle Kelley
- Prasad Kandula
- Rama K Vasudevan
- Sergei V Kalinin
- Vandana Rallabandi
- Alex Plotkowski
- Anton Ievlev
- Bogdan Dryzhakov
- Callie Goetz
- Christopher Fancher
- Christopher Hobbs
- Eddie Lopez Honorato
- Fred List III
- Keith Carver
- Kevin M Roccapriore
- Liam Collins
- Marcio Magri Kimpara
- Marti Checa Nualart
- Matt Kurley III
- Maxim A Ziatdinov
- Mostak Mohammad
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Omer Onar
- Praveen Kumar
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Shajjad Chowdhury
- Stephen Jesse
- Steven Randolph
- Subho Mukherjee
- Suman Debnath
- Thomas Butcher
- Tyler Gerczak
- Yongtao Liu

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

An ORNL invention proposes using 3D printing to make conductors with space-filling thin-wall cross sections. Space-filling thin-wall profiles will maximize the conductor volume while restricting the path for eddy currents induction.

The invention is related to the implementation of an bi-directional and isolated electric vehicle charger. The bidirectionality allows the electric vehicles to support the grid in case of disturbances thereby reducing the stress on the existing infrastructure.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Additively manufacturing of the windings with a conductor distributed in the cross-section according to the Hilbert curve provides many benefits as it allows for the reduction of the high-frequency losses due to the reduction of the effective winding conductor size.