Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Sergei V Kalinin
- Adam Stevens
- Alex Walters
- Amy Elliott
- Anton Ievlev
- Bogdan Dryzhakov
- Callie Goetz
- Cameron Adkins
- Christopher Hobbs
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Isha Bhandari
- Jeremy Malmstead
- Joshua Vaughan
- Keith Carver
- Kevin M Roccapriore
- Kitty K Mccracken
- Liam Collins
- Liam White
- Marti Checa Nualart
- Matt Kurley III
- Maxim A Ziatdinov
- Michael Borish
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Peter Wang
- Rangasayee Kannan
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Ryan Dehoff
- Ryan Heldt
- Sarah Graham
- Soydan Ozcan
- Stephen Jesse
- Steven Randolph
- Sudarsanam Babu
- Thomas Butcher
- Tyler Gerczak
- Tyler Smith
- William Peter
- Xianhui Zhao
- Yongtao Liu
- Yukinori Yamamoto

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.