Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Radu Custelcean
- Chris Masuo
- Costas Tsouris
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Alex Walters
- Brian Post
- Bruce Moyer
- Gyoung Gug Jang
- Jeffrey Einkauf
- Michael Kirka
- Rangasayee Kannan
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Benjamin L Doughty
- Brian Gibson
- Clay Leach
- Gs Jung
- Joshua Vaughan
- Luke Meyer
- Nikki Thiele
- Peeyush Nandwana
- Philip Bingham
- Santa Jansone-Popova
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alexander I Wiechert
- Alice Perrin
- Amit Shyam
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Diana E Hun
- Erin Webb
- Evin Carter
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Ilja Popovs
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jayanthi Kumar
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse Heineman
- John Potter
- Jong K Keum
- Kitty K Mccracken
- Laetitia H Delmau
- Liam White
- Luke Sadergaski
- Mark M Root
- Md Faizul Islam
- Michael Borish
- Mina Yoon
- Obaid Rahman
- Oluwafemi Oyedeji
- Parans Paranthaman
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Saurabh Prakash Pethe
- Soydan Ozcan
- Subhamay Pramanik
- Sudarsanam Babu
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yingzhong Ma
- Yukinori Yamamoto
- Zackary Snow

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Atmospheric carbon dioxide is captured with an aqueous solution containing a guanidine photobase and a small peptide, using a UV-light stimulus, and subsequently released when the light stimulus is removed.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.