Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Rangasayee Kannan
- Alex Walters
- Amit K Naskar
- Brian Post
- Michael Kirka
- Peeyush Nandwana
- Venkatakrishnan Singanallur Vaidyanathan
- Yong Chae Lim
- Zhili Feng
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Clay Leach
- Jaswinder Sharma
- Jian Chen
- Joshua Vaughan
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Philip Bingham
- Udaya C Kalluri
- Wei Zhang
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Bryan Lim
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Bowland
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Dali Wang
- Diana E Hun
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Holly Humphrey
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Jiheon Jun
- John Potter
- Kitty K Mccracken
- Liam White
- Mark M Root
- Michael Borish
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Priyanshi Agrawal
- Riley Wallace
- Ritin Mathews
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Sumit Gupta
- Tomas Grejtak
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.