Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Ali Passian
- Justin West
- Peter Wang
- Ritin Mathews
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Joseph Chapman
- Nicholas Peters
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- Hsuan-Hao Lu
- J.R. R Matheson
- Jaydeep Karandikar
- Joseph Lukens
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Muneer Alshowkan
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Anees Alnajjar
- Beth L Armstrong
- Brian Gibson
- Brian Williams
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Claire Marvinney
- Corson Cramer
- Craig Blue
- Emma Betters
- Fred List III
- Gordon Robertson
- Greg Corson
- Harper Jordan
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Liam White
- Luke Meyer
- Mariam Kiran
- Michael Borish
- Nance Ericson
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Varisara Tansakul
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yukinori Yamamoto

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.