Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Omer Onar
- Subho Mukherjee
- Brian Post
- Mostak Mohammad
- Chris Tyler
- Vandana Rallabandi
- Justin West
- Peter Wang
- Erdem Asa
- Ritin Mathews
- Shajjad Chowdhury
- Vivek Sujan
- Andrzej Nycz
- Blane Fillingim
- Burak Ozpineci
- Chris Masuo
- Emrullah Aydin
- Jon Wilkins
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- Gui-Jia Su
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- Veda Prakash Galigekere
- William Carter
- Yousub Lee
- Adam Siekmann
- Akash Jag Prasad
- Alex Roschli
- Ali Riza Ekti
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Beth L Armstrong
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Emma Betters
- Fred List III
- Gordon Robertson
- Greg Corson
- Isabelle Snyder
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Liam White
- Lingxiao Xue
- Luke Meyer
- Michael Borish
- Philip Bingham
- Rafal Wojda
- Richard Howard
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yukinori Yamamoto

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.

Wireless charging systems need to operate at high frequency, at or near resonance, to maximize power transfer distance and efficiency. High voltages appear across the inductors and capacitors. The use of discrete components reduces efficiency, increases system complexity.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology aims to provide and integrated and oxidation resistant cladding or coating onto carbon-based composites in seconds.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

ORNL has developed a revolutionary system for wirelessly transferring power to electric vehicles and energy storage systems, enabling efficient, contactless charging.