Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Brian Post
- Chris Tyler
- Amit Shyam
- Justin West
- Peter Wang
- Andrzej Nycz
- Peeyush Nandwana
- Ritin Mathews
- Alex Plotkowski
- Blane Fillingim
- Chris Masuo
- Ryan Dehoff
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Rangasayee Kannan
- Scott Smith
- Sumit Bahl
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amy Elliott
- Andres Marquez Rossy
- Beth L Armstrong
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Dean T Pierce
- Emma Betters
- Fred List III
- Gerry Knapp
- Gordon Robertson
- Greg Corson
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Jovid Rakhmonov
- Keith Carver
- Liam White
- Luke Meyer
- Michael Borish
- Nicholas Richter
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Steve Bullock
- Steven Guzorek
- Sunyong Kwon
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Ying Yang
- Yukinori Yamamoto

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.