Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Corson Cramer
- Soydan Ozcan
- Steve Bullock
- Steven Guzorek
- Chris Masuo
- Meghan Lamm
- Vipin Kumar
- Brian Post
- Halil Tekinalp
- Peter Wang
- Uday Vaidya
- Umesh N MARATHE
- Alex Walters
- Beth L Armstrong
- David Nuttall
- Greg Larsen
- James Klett
- Katie Copenhaver
- Trevor Aguirre
- Alex Roschli
- Brian Gibson
- Craig Blue
- Dan Coughlin
- Georges Chahine
- Hongbin Sun
- Jesse Heineman
- Jim Tobin
- John Lindahl
- Joshua Vaughan
- Luke Meyer
- Matt Korey
- Prashant Jain
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Udaya C Kalluri
- William Carter
- Adam Stevens
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Alexander I Wiechert
- Amber Hubbard
- Amit Shyam
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Brad Johnson
- Brandon A Wilson
- Brittany Rodriguez
- Cait Clarkson
- Calen Kimmell
- Callie Goetz
- Charles F Weber
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Christopher Hobbs
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Gabriel Veith
- Gordon Robertson
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Joanna Mcfarlane
- John Potter
- Jonathan Willocks
- Jordan Wright
- Joseph Olatt
- Josh Crabtree
- Julian Charron
- Keith Carver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kunal Mondal
- Mahim Mathur
- Marm Dixit
- Matt Kurley III
- Matt Vick
- Merlin Theodore
- Michael Kirka
- Mike Zach
- Mingyan Li
- Nadim Hmeidat
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oluwafemi Oyedeji
- Oscar Martinez
- Paritosh Mhatre
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Riley Wallace
- Ritin Mathews
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Ryan Ogle
- Sam Hollifield
- Sana Elyas
- Sanjita Wasti
- Shajjad Chowdhury
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Butcher
- Thomas Feldhausen
- Thomas R Muth
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vincent Paquit
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik
- Xianhui Zhao
- Xiaohan Yang

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.