Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steve Bullock
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Vipin Kumar
- Amit Shyam
- Brian Post
- Halil Tekinalp
- Meghan Lamm
- David Nuttall
- Uday Vaidya
- Umesh N MARATHE
- Alex Plotkowski
- Beth L Armstrong
- Dan Coughlin
- Greg Larsen
- James Klett
- Katie Copenhaver
- Nadim Hmeidat
- Trevor Aguirre
- Tyler Smith
- Adam Stevens
- Alex Roschli
- Brittany Rodriguez
- Craig Blue
- Georges Chahine
- James A Haynes
- Jim Tobin
- John Lindahl
- Matt Korey
- Pum Kim
- Ryan Dehoff
- Sanjita Wasti
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Sumit Bahl
- Xianhui Zhao
- Adwoa Owusu
- Akash Phadatare
- Alice Perrin
- Amber Hubbard
- Andres Marquez Rossy
- Ben Lamm
- Cait Clarkson
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Daniel Rasmussen
- David J Mitchell
- Dean T Pierce
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Jordan Wright
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marm Dixit
- Merlin Theodore
- Michael Kirka
- Nicholas Richter
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Shajjad Chowdhury
- Sunyong Kwon
- Thomas Feldhausen
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- William Peter
- Ying Yang
- Yukinori Yamamoto

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.