Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Ryan Dehoff
- Singanallur Venkatakrishnan
- William Carter
- Alex Roschli
- Amir K Ziabari
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Diana E Hun
- Luke Meyer
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Stephen M Killough
- Vincent Paquit
- Adam Stevens
- Alex Walters
- Amy Elliott
- Bryan Maldonado Puente
- Cameron Adkins
- Claire Marvinney
- Corey Cooke
- Erin Webb
- Evin Carter
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Isha Bhandari
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Mark M Root
- Michael Borish
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Rangasayee Kannan
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Soydan Ozcan
- Srikanth Yoginath
- Sudarsanam Babu
- Tyler Smith
- Varisara Tansakul
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto
1 - 10 of 19 Results

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.