Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Vincent Paquit
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Stephen M Killough
- Akash Jag Prasad
- Bryan Maldonado Puente
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Corey Cooke
- Costas Tsouris
- Dave Willis
- Gina Accawi
- Gurneesh Jatana
- James Haley
- James Parks II
- Jaydeep Karandikar
- Luke Chapman
- Mark M Root
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Sydney Murray III
- Vasilis Tzoganis
- Vasiliy Morozov
- Vladimir Orlyanchik
- Yun Liu
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).

The technology describes an electron beam in a storage ring as a quantum computer.