Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Soydan Ozcan
- Halil Tekinalp
- Meghan Lamm
- Vlastimil Kunc
- Ahmed Hassen
- Isabelle Snyder
- Umesh N MARATHE
- Dan Coughlin
- Katie Copenhaver
- Steven Guzorek
- Uday Vaidya
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Adam Siekmann
- Alex Roschli
- Amir K Ziabari
- Beth L Armstrong
- David Nuttall
- Diana E Hun
- Emilio Piesciorovsky
- Georges Chahine
- Matt Korey
- Nadim Hmeidat
- Philip Bingham
- Philip Boudreaux
- Pum Kim
- Ryan Dehoff
- Sanjita Wasti
- Stephen M Killough
- Steve Bullock
- Subho Mukherjee
- Tyler Smith
- Vincent Paquit
- Vivek Sujan
- Xianhui Zhao
- Aaron Werth
- Aaron Wilson
- Adwoa Owusu
- Akash Phadatare
- Ali Riza Ekti
- Amber Hubbard
- Ben Lamm
- Brian Post
- Brittany Rodriguez
- Bryan Maldonado Puente
- Cait Clarkson
- Corey Cooke
- Elizabeth Piersall
- Erin Webb
- Eve Tsybina
- Evin Carter
- Gabriel Veith
- Gary Hahn
- Gina Accawi
- Gurneesh Jatana
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- John Holliman II
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Mark M Root
- Marm Dixit
- Michael Kirka
- Nils Stenvig
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Ozgur Alaca
- Paritosh Mhatre
- Peter Wang
- Raymond Borges Hink
- Ryan Kerekes
- Sally Ghanem
- Sana Elyas
- Segun Isaac Talabi
- Shajjad Chowdhury
- Subhabrata Saha
- Tolga Aytug
- Viswadeep Lebakula
- Yarom Polsky

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.