Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Vincent Paquit
- Ryan Dehoff
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- Hongbin Sun
- Philip Bingham
- Philip Boudreaux
- Stephen M Killough
- Akash Jag Prasad
- Bryan Maldonado Puente
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Corey Cooke
- Costas Tsouris
- Gina Accawi
- Gurneesh Jatana
- Ilias Belharouak
- James Haley
- James Parks II
- Jaydeep Karandikar
- Mark M Root
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Ryan Kerekes
- Sally Ghanem
- Vishaldeep Sharma
- Vladimir Orlyanchik
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).

Technologies for optimizing prefab retrofit panel installation using a real-time evaluator is described.