Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Venkatakrishnan Singanallur Vaidyanathan
- Yong Chae Lim
- Zhili Feng
- Amir K Ziabari
- Diana E Hun
- Jian Chen
- Philip Bingham
- Philip Boudreaux
- Rangasayee Kannan
- Stephen M Killough
- Vincent Paquit
- Wei Zhang
- Adam Stevens
- Brian Post
- Bryan Lim
- Bryan Maldonado Puente
- Corey Cooke
- Dali Wang
- Gina Accawi
- Gurneesh Jatana
- Jiheon Jun
- John Holliman II
- Luke Chapman
- Mark M Root
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Peeyush Nandwana
- Peter Wang
- Priyanshi Agrawal
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Sudarsanam Babu
- Sydney Murray III
- Tomas Grejtak
- Vasilis Tzoganis
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Yun Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.