Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Ryan Dehoff
- Alex Plotkowski
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- James A Haynes
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Stephen M Killough
- Sumit Bahl
- Vincent Paquit
- Vlastimil Kunc
- Adam Stevens
- Ahmed Hassen
- Alice Perrin
- Andres Marquez Rossy
- Brian Post
- Bryan Maldonado Puente
- Christopher Fancher
- Corey Cooke
- Dan Coughlin
- Dean T Pierce
- Gerry Knapp
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Jay Reynolds
- Jeff Brookins
- Jim Tobin
- Josh Crabtree
- Jovid Rakhmonov
- Kim Sitzlar
- Mark M Root
- Merlin Theodore
- Michael Kirka
- Nicholas Richter
- Nolan Hayes
- Obaid Rahman
- Peeyush Nandwana
- Rangasayee Kannan
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Steven Guzorek
- Subhabrata Saha
- Sudarsanam Babu
- Sunyong Kwon
- Vipin Kumar
- William Peter
- Ying Yang
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.