Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Costas Tsouris
- Peter Wang
- Justin West
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Ritin Mathews
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Gyoung Gug Jang
- Peeyush Nandwana
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Amir K Ziabari
- David Olvera Trejo
- Diana E Hun
- Gs Jung
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Michael Cordon
- Michael Kirka
- Philip Bingham
- Philip Boudreaux
- Rangasayee Kannan
- Scott Smith
- Stephen M Killough
- Vincent Paquit
- William Carter
- Yousub Lee
- Ajibola Lawal
- Akash Jag Prasad
- Alex Roschli
- Amit Shyam
- Amy Elliott
- Benjamin Manard
- Beth L Armstrong
- Brian Gibson
- Bryan Maldonado Puente
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Charles F Weber
- Christopher Fancher
- Christopher Ledford
- Corey Cooke
- Corson Cramer
- Craig Blue
- Dhruba Deka
- Emma Betters
- Fred List III
- Gina Accawi
- Gordon Robertson
- Greg Corson
- Gurneesh Jatana
- Isha Bhandari
- James Klett
- James Parks II
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jesse Heineman
- Joanna Mcfarlane
- John Lindahl
- John Potter
- Jonathan Willocks
- Jong K Keum
- Josh B Harbin
- Keith Carver
- Liam White
- Luke Meyer
- Mark M Root
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Michael Borish
- Mina Yoon
- Nolan Hayes
- Obaid Rahman
- Richard Howard
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Sreshtha Sinha Majumdar
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Vandana Rallabandi
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yeonshil Park
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Monoterpenes conversion to C10 aromatics (60%) and C10 cycloalkanes (40%) in an inert environment, provides an established route for sustainable aviation fuel (SAF) blends sourced directly from biomass captured terpenes mixtures.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.