Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Peter Wang
- Justin West
- Ritin Mathews
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Peeyush Nandwana
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- Amir K Ziabari
- David Olvera Trejo
- Diana E Hun
- Hongbin Sun
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Michael Kirka
- Philip Bingham
- Philip Boudreaux
- Prashant Jain
- Rangasayee Kannan
- Scott Smith
- Stephen M Killough
- Vincent Paquit
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alexander I Wiechert
- Alex Roschli
- Amit Shyam
- Amy Elliott
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Beth L Armstrong
- Brad Johnson
- Brandon A Wilson
- Brian Gibson
- Bryan Maldonado Puente
- Calen Kimmell
- Callie Goetz
- Cameron Adkins
- Charles F Weber
- Christopher Fancher
- Christopher Hobbs
- Christopher Ledford
- Corey Cooke
- Corson Cramer
- Costas Tsouris
- Craig Blue
- Eddie Lopez Honorato
- Emma Betters
- Fred List III
- Gina Accawi
- Gordon Robertson
- Govindarajan Muralidharan
- Greg Corson
- Gurneesh Jatana
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joanna Mcfarlane
- John Lindahl
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Josh B Harbin
- Keith Carver
- Kunal Mondal
- Liam White
- Luke Meyer
- Mahim Mathur
- Mark M Root
- Matt Kurley III
- Matt Vick
- Michael Borish
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Ryan Kerekes
- Sally Ghanem
- Sam Hollifield
- Sarah Graham
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Thomas R Muth
- Tony L Schmitz
- Trevor Aguirre
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.