Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Corson Cramer
- Ilias Belharouak
- Steve Bullock
- Chris Masuo
- Peter Wang
- Alex Walters
- Greg Larsen
- James Klett
- Trevor Aguirre
- Alexey Serov
- Ali Abouimrane
- Beth L Armstrong
- Brian Gibson
- Jaswinder Sharma
- Joshua Vaughan
- Luke Meyer
- Marm Dixit
- Ruhul Amin
- Udaya C Kalluri
- Vlastimil Kunc
- William Carter
- Xiang Lyu
- Ahmed Hassen
- Akash Jag Prasad
- Amit K Naskar
- Amit Shyam
- Ben LaRiviere
- Calen Kimmell
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- David L Wood III
- Dustin Gilmer
- Gabriel Veith
- Georgios Polyzos
- Gordon Robertson
- Holly Humphrey
- Hongbin Sun
- J.R. R Matheson
- James Szybist
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Jonathan Willocks
- Jordan Wright
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Nadim Hmeidat
- Nance Ericson
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Riley Wallace
- Ritin Mathews
- Ritu Sahore
- Sana Elyas
- Steven Guzorek
- Todd Toops
- Tomonori Saito
- Tony Beard
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Yaocai Bai
- Zhijia Du

The technologies provide additively manufactured thermal protection system.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.