Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Omer Onar
- Subho Mukherjee
- Mostak Mohammad
- Vandana Rallabandi
- Ilias Belharouak
- Erdem Asa
- Shajjad Chowdhury
- Vivek Sujan
- Burak Ozpineci
- Emrullah Aydin
- Jon Wilkins
- Alexey Serov
- Ali Abouimrane
- Gui-Jia Su
- Jaswinder Sharma
- Marm Dixit
- Ruhul Amin
- Veda Prakash Galigekere
- Xiang Lyu
- Adam Siekmann
- Ali Riza Ekti
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- Isabelle Snyder
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Lingxiao Xue
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Rafal Wojda
- Ritu Sahore
- Todd Toops
- Yaocai Bai
- Zhijia Du

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

Technologies are described that are directed to polyphase rotary transformer for field excitation of electric machines.

Technologies directed to an LCC based induction cooktop architecture for non-ferromagnetic pan are described.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Output Current Estimation and Control in Primary Side LCC Secondary Side Series Compensated Wireless
Wireless charging of electric vehicles require the ability to control the output current in the power transfer system, but that is often not possible as the availability of signals from the secondary side to the primary side is difficult and not always feasible.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.

A Family of Integrated On-board Charger for Single and Dual Motor based Electric Vehicle Power Train
The invention aims to reduce the cost, weight and volume of existing on-board electric vehicle chargers by integrating power electronic converters of the chargers with the traction inverter.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

Technologies directed to an integrated on-board charger for dual motor based electric vehicle power train are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.