Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ying Yang
- Yong Chae Lim
- Alexey Serov
- Ali Abouimrane
- Alice Perrin
- Jaswinder Sharma
- Marm Dixit
- Rangasayee Kannan
- Ruhul Amin
- Ryan Dehoff
- Steven J Zinkle
- Xiang Lyu
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- Ben LaRiviere
- Beth L Armstrong
- Brian Post
- Bruce A Pint
- Bryan Lim
- Christopher Ledford
- Costas Tsouris
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hongbin Sun
- James A Haynes
- James Szybist
- Jiheon Jun
- Jonathan Willocks
- Jong K Keum
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nance Ericson
- Nicholas Richter
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Paul Groth
- Peeyush Nandwana
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Radu Custelcean
- Ritu Sahore
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Todd Toops
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yaocai Bai
- Yiyu Wang
- Yukinori Yamamoto
- Zhijia Du
- Zhili Feng

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.