Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Amit K Naskar
- Isabelle Snyder
- Jaswinder Sharma
- Alexey Serov
- Ali Abouimrane
- Emilio Piesciorovsky
- Logan Kearney
- Marm Dixit
- Michael Toomey
- Nihal Kanbargi
- Ruhul Amin
- Xiang Lyu
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Ali Riza Ekti
- Arit Das
- Benjamin L Doughty
- Ben LaRiviere
- Beth L Armstrong
- Christopher Bowland
- David L Wood III
- Edgar Lara-Curzio
- Elizabeth Piersall
- Eve Tsybina
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Lu Yu
- Meghan Lamm
- Michelle Lehmann
- Nance Ericson
- Nils Stenvig
- Ozgur Alaca
- Paul Groth
- Pradeep Ramuhalli
- Raymond Borges Hink
- Ritu Sahore
- Robert E Norris Jr
- Santanu Roy
- Subho Mukherjee
- Sumit Gupta
- Todd Toops
- Uvinduni Premadasa
- Vera Bocharova
- Viswadeep Lebakula
- Vivek Sujan
- Yaocai Bai
- Yarom Polsky
- Zhijia Du

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.