Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Hongbin Sun
- Alexey Serov
- Jaswinder Sharma
- Prashant Jain
- Soydan Ozcan
- Xiang Lyu
- Xianhui Zhao
- Alex Roschli
- Amit K Naskar
- Beth L Armstrong
- Erin Webb
- Evin Carter
- Gabriel Veith
- Georgios Polyzos
- Halil Tekinalp
- Holly Humphrey
- Ian Greenquist
- Ilias Belharouak
- James Szybist
- Jeremy Malmstead
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Kitty K Mccracken
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Mengdawn Cheng
- Michael Toomey
- Michelle Lehmann
- Nate See
- Nihal Kanbargi
- Nithin Panicker
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ritu Sahore
- Ruhul Amin
- Sanjita Wasti
- Thien D. Nguyen
- Todd Toops
- Tyler Smith
- Vishaldeep Sharma
- Vittorio Badalassi

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and