Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Isabelle Snyder
- Ali Riza Ekti
- Emilio Piesciorovsky
- Raymond Borges Hink
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Brian Sanders
- Burak Ozpineci
- Elizabeth Piersall
- Emrullah Aydin
- Eve Tsybina
- Gary Hahn
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaac Sikkema
- Jerry Parks
- Joseph Olatt
- Kunal Mondal
- Mahim Mathur
- Mingyan Li
- Mostak Mohammad
- Nils Stenvig
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Paul Abraham
- Peter L Fuhr
- Sam Hollifield
- Subho Mukherjee
- Vilmos Kertesz
- Viswadeep Lebakula
- Vivek Sujan
- Xiaohan Yang
- Yang Liu
- Yarom Polsky

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).