Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Amit Shyam
- Peeyush Nandwana
- Alex Plotkowski
- Brian Post
- Rangasayee Kannan
- Sudarsanam Babu
- Blane Fillingim
- James A Haynes
- Lauren Heinrich
- Ryan Dehoff
- Sumit Bahl
- Thomas Feldhausen
- Ying Yang
- Yousub Lee
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Brian Sanders
- Bruce A Pint
- Bryan Lim
- Christopher Fancher
- Dean T Pierce
- Gerald Tuskan
- Gerry Knapp
- Gordon Robertson
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jerry Parks
- John F Cahill
- Josh Michener
- Jovid Rakhmonov
- Liangyu Qian
- Nicholas Richter
- Paul Abraham
- Peter Wang
- Roger G Miller
- Sarah Graham
- Steven J Zinkle
- Sunyong Kwon
- Tim Graening Seibert
- Tomas Grejtak
- Vilmos Kertesz
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiaohan Yang
- Yang Liu
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.