Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- Mingyan Li
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Sam Hollifield
- Stephen M Killough
- Vincent Paquit
- Brian Sanders
- Brian Weber
- Bryan Maldonado Puente
- Corey Cooke
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Isaac Sikkema
- Isaiah Dishner
- Jeff Foster
- Jerry Parks
- John F Cahill
- John Holliman II
- Joseph Olatt
- Josh Michener
- Kevin Spakes
- Kunal Mondal
- Liangyu Qian
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark M Root
- Mary A Adkisson
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Paul Abraham
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- T Oesch
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.