Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Venugopal K Varma
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Mahabir Bhandari
- Marm Dixit
- Ruhul Amin
- Xiang Lyu
- Adam Aaron
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Brian Sanders
- Charles D Ottinger
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Govindarajan Muralidharan
- Holly Humphrey
- Hongbin Sun
- Ilenne Del Valle Kessra
- James Szybist
- Jerry Parks
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Paul Abraham
- Paul Groth
- Pradeep Ramuhalli
- Ritu Sahore
- Rose Montgomery
- Sergey Smolentsev
- Thomas R Muth
- Todd Toops
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu
- Yaocai Bai
- Zhijia Du

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.