Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Adam M Guss
- Corson Cramer
- Josh Michener
- Ahmed Hassen
- Amit K Naskar
- Greg Larsen
- James Klett
- Liangyu Qian
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Andrzej Nycz
- Austin L Carroll
- Isaiah Dishner
- Jaswinder Sharma
- Jeff Foster
- John F Cahill
- Kuntal De
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Serena Chen
- Steven Guzorek
- Udaya C Kalluri
- Xiaohan Yang
- Alex Walters
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Biruk A Feyissa
- Brittany Rodriguez
- Carrie Eckert
- Charlie Cook
- Chris Masuo
- Christopher Bowland
- Christopher Hershey
- Christopher Ledford
- Clay Leach
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Debjani Pal
- Dustin Gilmer
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Joanna Tannous
- John Lindahl
- Jordan Wright
- Kyle Davis
- Michael Kirka
- Paul Abraham
- Robert E Norris Jr
- Sana Elyas
- Santanu Roy
- Subhabrata Saha
- Sumit Gupta
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vilmos Kertesz
- Vincent Paquit
- Vipin Kumar
- William Alexander
- Yang Liu

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The technologies provide additively manufactured thermal protection system.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.