Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Kyle Gluesenkamp
- Andrzej Nycz
- Biruk A Feyissa
- Bo Shen
- Carrie Eckert
- Josh Michener
- Kuntal De
- Melanie Moses-DeBusk Debusk
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Austin Carroll
- Brian Sanders
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Dhruba Deka
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Manley
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Kitty K Mccracken
- Kyle Davis
- Liangyu Qian
- Mengdawn Cheng
- Nandhini Ashok
- Navin Kumar
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Serena Chen
- Soydan Ozcan
- Sreshtha Sinha Majumdar
- Tugba Turnaoglu
- Tyler Smith
- Vincent Paquit
- Xianhui Zhao
- Xiaobing Liu
- Yang Liu
- Yasemin Kaygusuz
- Yeonshil Park
- Yifeng Hu

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

This technology can activate gene expression in a time- and dose-dependent manner in the thermophilic bacterium Clostridium thermocellum. This system will mediate inducible gene expression for strain engineering in C.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

Orphan bHLH enhances plant biomass gain. The orphan bHLH gene has an exclusive nuclear subcellular localization with a transcriptional activator activity.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Buildings are energy intensive and contribute to carbon dioxide emissions while accounting for one-third of energy consumption worldwide. Heat pump technology can assist in electrification and decarbonization efforts.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.