Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Beth L Armstrong
- Amit K Naskar
- Jun Qu
- Alex Plotkowski
- Amit Shyam
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Corson Cramer
- James A Haynes
- Jaswinder Sharma
- Josh Michener
- Kuntal De
- Logan Kearney
- Meghan Lamm
- Michael Toomey
- Nihal Kanbargi
- Steve Bullock
- Sumit Bahl
- Tomas Grejtak
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Alice Perrin
- Arit Das
- Austin Carroll
- Benjamin L Doughty
- Ben Lamm
- Brian Sanders
- Bryan Lim
- Chris Masuo
- Christopher Bowland
- Christopher Ledford
- Clay Leach
- Daniel Jacobson
- David J Mitchell
- Debjani Pal
- Edgar Lara-Curzio
- Erin Webb
- Ethan Self
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Gerald Tuskan
- Gerry Knapp
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Klett
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Kitty K Mccracken
- Kyle Davis
- Liangyu Qian
- Marm Dixit
- Matthew S Chambers
- Mengdawn Cheng
- Michael Kirka
- Nancy Dudney
- Nandhini Ashok
- Nicholas Richter
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Peeyush Nandwana
- Rangasayee Kannan
- Robert E Norris Jr
- Santanu Roy
- Serena Chen
- Sergiy Kalnaus
- Shajjad Chowdhury
- Soydan Ozcan
- Sumit Gupta
- Sunyong Kwon
- Tolga Aytug
- Trevor Aguirre
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang
- Yiyu Wang

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.