Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Ali Riza Ekti
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Raymond Borges Hink
- Aaron Werth
- Aaron Wilson
- Arit Das
- Benjamin L Doughty
- Bruce Moyer
- Burak Ozpineci
- Christopher Bowland
- Debjani Pal
- Edgar Lara-Curzio
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Holly Humphrey
- Isaac Sikkema
- Isabelle Snyder
- Jeffrey Einkauf
- Jennifer M Pyles
- Joseph Olatt
- Kunal Mondal
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mahim Mathur
- Mingyan Li
- Mostak Mohammad
- Nils Stenvig
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Robert E Norris Jr
- Sam Hollifield
- Santanu Roy
- Sumit Gupta
- Uvinduni Premadasa
- Vera Bocharova
- Yarom Polsky

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.