Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Isabelle Snyder
- Ali Abouimrane
- Emilio Piesciorovsky
- Ruhul Amin
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Ali Riza Ekti
- Bruce Moyer
- David L Wood III
- Debjani Pal
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- Georgios Polyzos
- Hongbin Sun
- Jaswinder Sharma
- Jeffrey Einkauf
- Jennifer M Pyles
- Junbin Choi
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Lu Yu
- Marm Dixit
- Mike Zach
- Nils Stenvig
- Ozgur Alaca
- Padhraic L Mulligan
- Pradeep Ramuhalli
- Raymond Borges Hink
- Sandra Davern
- Subho Mukherjee
- Viswadeep Lebakula
- Vivek Sujan
- Yaocai Bai
- Yarom Polsky
- Zhijia Du

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.