Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Yong Chae Lim
- Rangasayee Kannan
- Adam Stevens
- Brian Post
- Bruce Moyer
- Bryan Lim
- Callie Goetz
- Christopher Hobbs
- Debjani Pal
- Eddie Lopez Honorato
- Fred List III
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- Justin Griswold
- Keith Carver
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Matt Kurley III
- Mike Zach
- Padhraic L Mulligan
- Peeyush Nandwana
- Priyanshi Agrawal
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Ryan Dehoff
- Ryan Heldt
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Thomas Butcher
- Tomas Grejtak
- Tyler Gerczak
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.