Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Marm Dixit
- Ruhul Amin
- Vlastimil Kunc
- Xiang Lyu
- Ahmed Hassen
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Bruce Moyer
- Dan Coughlin
- David L Wood III
- Debjani Pal
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jeffrey Einkauf
- Jennifer M Pyles
- Jim Tobin
- Jonathan Willocks
- Josh Crabtree
- Junbin Choi
- Justin Griswold
- Khryslyn G Araño
- Kim Sitzlar
- Kuntal De
- Laetitia H Delmau
- Logan Kearney
- Luke Sadergaski
- Lu Yu
- Meghan Lamm
- Merlin Theodore
- Michael Toomey
- Michelle Lehmann
- Mike Zach
- Nance Ericson
- Nihal Kanbargi
- Padhraic L Mulligan
- Paul Groth
- Pradeep Ramuhalli
- Ritu Sahore
- Sandra Davern
- Steven Guzorek
- Subhabrata Saha
- Todd Toops
- Vipin Kumar
- Yaocai Bai
- Zhijia Du

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.